To help diagnose and monitor the treatment of chronic myelogenous leukemia (CML) and a type of B-cell acute lymphoblastic leukemia (ALL)
To help diagnose and monitor the treatment of chronic myelogenous leukemia (CML) and a type of B-cell acute lymphoblastic leukemia (ALL)
When you have results of a complete blood count (CBC) and/or signs and symptoms that suggest that you may have leukemia; periodically when you are being treated for CML or BCR-ABL1-positive ALL
A blood sample drawn from a vein or a bone marrow sample collected using a bone marrow aspiration and/or biopsy procedure
None
BCR-ABL1 refers to a gene sequence found in an abnormal chromosome 22 of some people with certain forms of leukemia. Unlike most cancers, the cause of chronic myelogenous leukemia (CML) and some other leukemias can be traced to a single, specific genetic abnormality in one chromosome. The presence of the gene sequence known as BCR-ABL1 confirms the diagnosis of CML and a form of acute lymphoblastic lymphoma (ALL), specifically a type of B-lymphoblastic leukemia/lymphoma. In very rare cases, the abnormal chromosome is linked to cases of acute myeloid leukemia and T-lymphoblastic leukemia/lymphoma.
Humans have 23 pairs of chromosomes containing inherited genetic information. Those genes contain the blueprints, in the form of DNA, for producing the proteins that our bodies rely on to function properly. While some genetic abnormalities are inherited, they can also come from changes that occur to genes or chromosomes after a person is born. This can happen through exposure to various environmental factors (e.g., radiation, certain chemicals) but more often for unknown reasons.
The BCR-ABL1 gene sequence is one such acquired change that is formed when pieces of chromosome 9 and chromosome 22 break off and switch places. When this occurs, the ABL1 region in chromosome 9 fuses with the BCR gene region in chromosome 22. This type of change is called a reciprocal translocation and is often abbreviated as t(9;22). The resulting chromosome 22 that has the BCR-ABL1 gene sequence is known as the Philadelphia (Ph) chromosome because that is where it was first discovered.
The resulting Philadelphia chromosome contains an abnormal BCR-ABL1 fusion gene that encodes an abnormal protein that is responsible for the development of CML and a type of ALL. At diagnosis, 90-95% of cases of CML show a characteristic t(9;22) BCR-ABL1 reciprocal chromosomal translocation. About 30% of adults with B-ALL have the translocation, while it is only present in about 2 to 4% of cases in children.
The protein coded for by the abnormal BCR-ABL1 fusion gene is a type of enzyme called a tyrosine kinase. That enzyme is responsible for the uncontrolled growth of leukemic cells. When large numbers of abnormal leukemic cells start to crowd out the normal blood cell precursors in the bone marrow, signs and symptoms of leukemia start to emerge. Treatment of these leukemias typically involves a tyrosine kinase inhibitor (TKI).
Testing for BCR-ABL1 detects the Philadelphia chromosome and BCR-ABL1 fusion gene or its transcripts, which are the RNA copies made by the cell from the abnormal stretches of DNA. The presence of the BCR-ABL1 abnormality confirms the clinical diagnosis of CML, a type of ALL, and rarely acute myeloid leukemia (AML).
There are several different types of BCR-ABL1 tests available, including:
This form enables patients to ask specific questions about lab tests. Your questions will be answered by a laboratory scientist as part of a voluntary service provided by one of our partners, American Society for Clinical Laboratory Science. Please allow 2-3 business days for an email response from one of the volunteers on the Consumer Information Response Team.
Send Us Your Question